
Oracle Banking Digital

Experience
Extensibility Guide

July 2017

Extensibility Guide

July 2017

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights
are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use
this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy,
and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use
of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability,
is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Table of Contents

1. Objective and Scope .. 4
2. Overview of Use Cases .. 6
3. Dictionary .. 18
4. Outbound Webservice Extension. .. 32
5. Security Customizations ... 35

Objective and Scope

Oracle Banking Digital Experience Extensibility Guide 4

1. Objective and Scope

1.1 Background

CLIP is designed to help banks respond strategically to today’s business challenges, while also
transforming their business models and processes to reduce operating costs and improve
productivity across both front and back offices. It is a one-stop solution for a bank that seeks to
leverage Oracle Fusion experience across its core banking operations across its retail and
corporate offerings.

CLIP provides a unified yet scalable IT solution for a bank to manage its data and end-to-end
business operations with an enriched user experience. It comprises pre-integrated enterprise
applications leveraging and relying on the underlying Oracle Technology Stack to help reduce in-
house integration and testing efforts.

1.1.1 Objective and Scope

While most product development can be accomplished via highly flexible system parameters and
business rules, further competitive differentiation can be achieved via IT configuration & extension
support. Time consuming, custom coding to enable region specific, site specific or bank specific
customizations can be minimized by offering extension points and customization support which can
be implemented by the bank and / or by partners.

Extensibility objective

CLIP when extended & customized by the Bank and / or Partners results in reduced dependence
on Oracle. As a result of this, the Bank does not have to align plans with Oracle’s release plans for
getting certain customizations or product upgrades. The bank has the flexibility to choose and do
the customizations themselves or have them done by partners.

One of the key considerations towards enabling extensibility in CLIP has been to ensure that the
developed software can respond to future growth. This has been achieved by disciplined software
development leading to cleaner dependencies, well defined interfaces and abstractions with
corresponding reduction in high cohesion & coupling. Hence, the extensions are kept separate from
Core – Bank can take advantage of CLIP Core upgrades as most extensions done for a previous
release can sit directly on top of the upgraded version. This reduces testing effort thereby reducing
overall costs of planning & taking up an upgrade. This would also improve TTM significantly as the
bank enjoys the advantage of getting universal features through upgrades.

The broad guiding principles w.r.t. providing extensibility in CLIP are summarized below:

 Strategic intent for enabling customers and partners to extend the application.

 Internal development uses the same principles for client specific customizations.

 Localization packs.

 Extensions by Oracle Consultants, Oracle Partners, Banks or Bank Partners.

 Extensions through the addition of new functionality or modification of existing functionality.

 Planned focus on this area of the application.

 Standards based.

 Leverage large development pool for standards based technology.

 Developer tool sets provided for as part of JDeveloper and Eclipse for productivity.

Objective and Scope

Oracle Banking Digital Experience Extensibility Guide 5

Document Scope

The scope of this document is to explain the customization & extension of CLIP for the following
use cases:

 Customizing CLIP UI

 Adding a new field or a table on the screen

 Removing fields from the UI

 Customizing CLIP application services and implement composite application services

 Adding pre-processing or post processing validations in the application services extension

 Adding Business Logic in pre hook or post hook points in the application services extension

 Altering the product behaviour at customizations hooks provided as adapter calls in functional
areas that are prone to change and in between modules that can be replaced (e.g. alerts,
content management)

 Adding new fields to the CLIP domain model and including it on the corresponding screen.

 Adding a new report

 Adding a partner link or a human task to an existing process

 Adding new steps as a sub-process

 Adding or customizing facts and business rules in the application and configuring them for
different modules

 Adding the processing of the uploaded files data

 Adding the feature of printing the receipt once the transaction is over

 Defining the security related access and authorization policies

 Defining different security related rules, validator and processing logics

 Customizing different functionalities like user search, role evaluation and limit exclusion in the
application related to security

This document would be a useful tool for Oracle Consulting, bank IT and partners for customizing
and extending the product.

1.1.2 Complementary documentation

The document is a developer’s extensibility guide and does not intend to work as a replacement of
the functional specification which would be the primary resource covering the following:

CLIP installation & configuration.

CLIP parameterization as part of implementation.

Functional solution and product user guide.

1.1.3 Out of scope

The scope of extensibility does not intend to suggest that CLIP is forward compatible.

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 6

2. Overview of Use Cases

The use cases that are covered in this document shall enable the developer in applying the
discipline of extensibility to CLIP. While the overall support for customizations is complete in most
respects, the same is not a replacement for implementing a disciplined, thoughtful and well
designed approach towards implementing extensions & customizations to the product.

2.1 Extensibility use cases

This section gives an overview of the extensibility topics and customization use cases to be covered
in this document. Each of these topics will be detailed in the further sections.

 Extending Service Execution

 In CLIP, additional business logic might be required for certain services. This additional logic
is not part of the digital experience product functionality but could be a client requirement. For
these purposes, hooks have been provided in the application code wherein additional
business logic can be added or overridden with custom business logic. The hook provided is:

 Service Extensions

This hook resides in the app layer of the application service. This hook is present for
both before as well after the actual service execution. The additional business logic
has to implement the interface I<service_name>ApplicationServiceExt and
extend and override the default implementation
Void<service_name>ApplicationServiceExt provided for the service. Multiple
implementations can be defined for a particular service. The service extensions

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 7

executor invokes all the implementations defined for the particular service both
before and after the actual service executes.

2.2 Extending Service Executions

This section describes how additional business logic can be added prior to (pre hook) and / or post
the execution (post hook) of particular application service business logic on the host side. Extension
prior to a service execution can be required for the purposes of additional input validation, input
manipulation, custom logging etc. A few examples in which the application service extensions in
the form of pre and post hook could be required are mentioned below.

An application service extension in the form of a pre hook can be important in the following
scenarios:

 Additional input validations

 Execution of business logic, which necessarily has to happen before going ahead with normal
service execution.

An application service extension in the form of a post hook can be important in the following
scenarios:

 Output response manipulation

 Custom data logging for subsequent processing or reporting.

The CLIP application provides one layer where the pre and post extension hooks for extending
service execution can be implemented i.e.

Application Service layer – referred to as the “app” layer extension.

2.3 Service Extension – Extending the “app” layer

The “app” layer is referred to as the application service layer and it denotes the business logic that
executes as part of a service method exposed by CLIP middleware host. Extension points provided
as pre & post hooks are present in this layer at the same points in the service.

2.3.1 Class Diagram

The Application Service layer involves the interaction between a set of components of the product
mentioned in the class diagram below.

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 8

2.3.2 Data Transfer Object

Subclasses of the Customized Domain Object which are extended by the partners or consulting
teams can be mapped as input & output to the application services with the help of this class.
Additionally, this class is used to store the user defined field reference key generated and stored
inside the tables mapped to the domain objects. This will help us to handle additional fields added
at UI layer.

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 9

2.3.3 Application Service Extension Interface:

This interface has a pair of pre and post method definitions for each application service method of
the present. A service extension class has to implement this interface. The pre method of the
extension is executed before the actual service method and the post method of the extension is
executed after the service method. The signatures of these methods are:

public void pre<Method_Name>(<Method_Parameters>) throws Exception;

public void post<Method_Name>(<Method_Parameters>) throws Exception;

For example:

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 10

(i) Application Service Extension Executor Interface

The service extension executor class, on load, creates an instance each of all the extensions
defined in the service extensions configuration file. If no extensions are defined for a particular
service, the executor creates an instance of the default extension for the service. The executor also
has a pair of pre and post methods for each method of the actual service. These methods in turn
call the corresponding methods of all the extension classes defined for the service. The naming
convention for the generated executor classes which enable “extension chaining” is as shown
below:

Interface : I<Application Service Qualifier>ApplicationServiceExtExecutor

Implementation : <Application Service Qualifier>ApplicationServiceExtExecutor

For example:

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 11

(ii) Void Extension (Default Extension)

Void<Service_Name>Ext. This class implements the aforementioned service extension interface
without any business logic viz. the implemented methods are empty.

The default extension is a useful & convenient mechanism to implement the pre and / or post
extension hooks for specific methods of an application service. Instead of implementing the entire
interface, one should extend the default extension class and override only required methods with
the additional business logic. Product developers DO NOT implement any logic, including product
extension logic, inside the default extension classes. This is because the classes are auto-
generated & reserved for product use and get overwritten as part of a bulk generation process.

For example:

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 12

(iii) 3.1.1.5 Custom Extension (Example snippet to be developed by the customization
Developer)

This Customized Service Extension Class implements methods of Application Service Extension
Interface. This class contains pre hook and post hook point for the service. The pre method of this
customized extension is executed before the actual service method and the post method of this
is executed after the service method.

For Example:

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 13

(iv) Customized Domain Object (Example snippet to be developed by the customization
Developer)

This newly created Customized Domain Object class extends Existing Domain Object Class.
Mapping for same should be done in database as Customized Abstract Domain Object
Configuration. This class contains additional fields added at UI layer and getter, setter for the same.

For Example:

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 14

2.3.4 Sequence Diagram

Every application service method has a standard set of framework method calls as shown in the
sequence diagram below:

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 15

The pre hook is provided after the invocation of fetchTransactionStatus call inside the application
service. At this step, the current task code is received , any additional manipulation of the input
received from the User interface channel can be done in the pre hook. Apart from this additional
data coming from the screen specific to client requirements can be handled in the pre hook.

The post hook is provided after the business logic corresponding to the application service invoked
has executed and before the successful execution of the entire service is marked in the status
object. This ensures that the status marking takes into consideration any execution failures of post
hook prior to reporting the result to the calling source. Both, the pre and the post hooks accept the
service input parameters as the inputs. The post hook also accepts the Response parameter as
the input.

2.4 Extension Configuration

Set the property id and the property values in the digx_fw_config_all_b table. The property id will
be the fully qualified name of the service and the value will be the fully qualified name of the custom
extension created.

For example:

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,

OBJECT_VERSION_NUMBER)

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 16

values ('com.ofss.digx.app.origination.service.submission.applicant.Applicant',

'ServiceExtensionsConfig',

'com.ofss.digx.app.origination.service.submission.application.ext.CustomLoanApplicationExtensi

on', 'N', 'asdf', 'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

2.4.1 Mapping the domain object.

The domain object created needs to be mapped as a custom domain object for the existing domain
object. For example:

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,

OBJECT_VERSION_NUMBER)

values ('com.ofss.digx.domain.origination.entity.submission.lending.application',

'CustomizedAbstractDomainObjectConfig',

'com.ofss.digx.domain.origination.entity.submission.lending.application.ext.Application', 'N', 'asdf',

'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

Three main columns that need to be feed with new information are.

 CATEGORY_ID : “CustomizedAbstractDomainObjectConfig”

 PROP_VALUE:” CLASS NAME of the class implementing the custom domain object ”

 PROP_ID:” CLASS NAME OF THE DomainObject”.

Overview of Use Cases

Oracle Banking Digital Experience Extensibility Guide 17

2.5 Summary of Steps

Dictionary

Oracle Banking Digital Experience Extensibility Guide 18

3. Dictionary

Data transfer object (DTO) is a design pattern used to transfer data between an external system
and the application service. All the information may be wrapped in a single DTO containing all the
details and passed as input request as well as returned as an output response. The client can then
invoke accessory (or getter) methods on the DTO to get the individual attribute values from the
Transfer Object. All request response classes in CLIP application services are modelled as data
transfer objects. These objects extend a base class DataTransferObject which holds an array of
Dictionary object. The Dictionary encapsulates an array of NameValuePairDTO which is used
to pass data of custom data fields or attributes from the UI layer to the host middleware.

Dictionary class looks like

Following image shows use of dictionary with NameValuePairDTO and added it to the Data
Transfer Object.

Dictionary

Oracle Banking Digital Experience Extensibility Guide 19

3.1 Translating Dictionary data into custom domain object

If dictionary is added to DTO then it is necessary to get customized domain Object which extends
base Domain Object. Method getCustomizedDomainObject in AbstractAssembler is used for
same.

Following image shows call to get Customized domain Object if additional data (Dictionary) is
added to the request dto.

3.2 Role of Dictionary in Extensibility

Following image shows how dictionary class is used and components with which it has

Associativity.

Dictionary

Oracle Banking Digital Experience Extensibility Guide 20

3.2.1 Domain Object Extension

This section describes how consultants or other third parties can extend domain and achieve
Extensibility. This provides true domain model extension capabilities by allowing addition of custom
data fields to the underlying domain objects.

Basic steps in Domain Object extensions are:

Create new customized domain Object which will extend existing one and add additional data .

Dictionary

Oracle Banking Digital Experience Extensibility Guide 21

For example:

Configure Customized domain object in database

Dictionary

Oracle Banking Digital Experience Extensibility Guide 22

The domain object created needs to be mapped as a custom domain object for the existing domain
object. For example:

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,

OBJECT_VERSION_NUMBER)

values ('com.ofss.digx.domain.origination.entity.submission.lending.application',

'CustomizedAbstractDomainObjectConfig',

'com.ofss.digx.domain.origination.entity.submission.lending.application.ext.Application', 'N', 'asdf',

'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

Three main columns that need to be feed with new information are.

 CATEGORY_ID : “CustomizedAbstractDomainObjectConfig”

 PROP_VALUE:” CLASS NAME of the class implementing the custom domain object ”

 PROP_ID:” CLASS NAME OF THE DomainObject”.

Create Eclipse Mapping - You will need to create eclipse mapping to map the database table to
the domain object. Follow these steps:

Create new ORM file to handle Customized Domain Object. This ORM file should contain entries

for all columns in corresponding domain object table.

Add an entry for this ORM XML in the mapping configuration xml - eclipse configuration XML.

Create new table corresponds to newly created Domain Object.

Dictionary

Oracle Banking Digital Experience Extensibility Guide 23

Newly created ORM file will look like (CollaborationDemo.orm.xml):

Dictionary

Oracle Banking Digital Experience Extensibility Guide 24

Mapping configuration xml(persistence.xml):

Here Assembler should fetch customized domain object. Following example shows Assembler calls
getCustomizedDomainObject which returns customized domain object with mapping of
nameValuePairDTOArray to this customized domain Object internally.

Dictionary

Oracle Banking Digital Experience Extensibility Guide 25

For example:

Dictionary

Oracle Banking Digital Experience Extensibility Guide 26

3.3 Sequence Diagram

3.3.1 Adapter Mechanism

An adapter, by definition, helps the interfacing or integrating components adapt. In software it
represents a coding discipline that helps two different modules or systems to communicate with
each other and helps the consuming side adapt to any incompatibility of the invoked interface work
together. Incompatibility could be in the form of input data elements which the consumer does not
have and hence might require defaulting or the invoked interface might be a third party interface
with a different message format requiring message translation. Such functions, which do not form
part of the consumer functionality, can be implemented in the adapter layer.

3.4 Adapter Mechanism Class Diagram

An Application Service in calling module calls the getAdapterFactory() method of class
AdapterFactoryConfigurator which returns an instance of an implementation of the abstract class
AdapterFactory. The class of instance is decided by the string parameter passed to the method.

The getAdapter() method in the AdapterFactory returns an adapter instance . The class of instance
is decided by the string parameter passed to the method.

The Application Service then uses this adapter instance to access any data from an application
service within another module.

Dictionary

Oracle Banking Digital Experience Extensibility Guide 27

3.5 Adapter Mechanism Sequence Diagram

A method in an application service gets an instance of a desired adapter factory by calling
getAdapterFactory() method of AdapterFactoryConfigurator class. The instance of the adapter
factory obtained is used to call getAdapter() method to get an instance of the adapter. This adapter
instance has all the methods to communicate to the service in another module.

Dictionary

Oracle Banking Digital Experience Extensibility Guide 28

3.6 Customizing Existing Adapters (Custom Adapter)

If an added functionality or replacement functionality is required for an existing adapter or existing
method in an adapter, the customization developer has to develop a new adapter and
corresponding adapter factory and override the method in a new custom adapter class. The custom
adapter would have to override and implement the methods which need changes.

Dictionary

Oracle Banking Digital Experience Extensibility Guide 29

3.6.1 Custom Adapter Example

We take the example of LoanApplicationRequirementAdapter. For example the requirement is to
send an email alert when the requirements of a particular loan application are updated. The clip
application by default does not provide any integration with an SMTP/Email server. The additional
interfacing with the gateway can be done in the custom adapter. . The following steps would have
to be followed for implementation of a custom LoanApplicationRequirementAdapter.

Develop a CustomLoanApplicationRequirementAdapter and Custom
LoanApplicationRequirementAdapterFactory. As a guideline, the custom adapter should extend
the existing adapter and override the methods which needs to be replaced with new functionality.

For Example:

Dictionary

Oracle Banking Digital Experience Extensibility Guide 30

3.6.2 Custom Adapter Configuration.

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,

OBJECT_VERSION_NUMBER)

values (‘IS_LOAN_APPLICATION_REQUIREMNT_ADAPTER_CUSTOM',

‘customadapterconfig’, 'true', 'N', 'asdf', 'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

3.7 Mock Adapter

Mock adapter represents the intermediate layer required for communicating with third party host
system. operations supported by Mock adapter are create, fetch, etc. Mock Adapter is basically
responsible for generating required response from the core banking system for a given request.

3.7.1 Mock Adapter Example.

Here it is responsible for communicating with third party host system as part of Loan requirement
for a party.

Dictionary

Oracle Banking Digital Experience Extensibility Guide 31

3.7.2 Mock Adapter Configuration:Database needs to be configured for the execution of
the Mock Adapter corresponding to a service.

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,

OBJECT_VERSION_NUMBER)

values ('PARTY_COLLECTION_ADAPTER_MOCKED', 'adapterfactoryconfig', 'true', 'N', 'asdf',

'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

Outbound Webservice Extension.

Oracle Banking Digital Experience Extensibility Guide 32

4. Outbound Webservice Extension.

The outbound webservice configurations are set of properties defined to invoke services from the
host. The host is the core bank system where the business logic for core banking facilities is written
and contains the corresponding services to access that data. The existing CLIP application has an
Adapter layer which directly interacts with the host. There are extension endpoints available for
configuring a different host in the adapter layer. Following steps need to be followed:

4.1 Using your own Web Service constants

The web service constants will change depending on the WSDL specification provided by the host
system. An Example WebServiceConstants file is shown below:

Outbound Webservice Extension.

Oracle Banking Digital Experience Extensibility Guide 33

4.2 Making the Database Entries

digx_fw_config_out_ws_cfg_b. Holds the entries for the host service endpoints.

For Example:

insert into digx_fw_config_out_ws_cfg_b (SERVICE_ID, PROCESS, URL, ENDPOINT_URL,

NAMESPACE, TIME_OUT, SERVICE, STUB_CLASS, SECURITY_POLICY, ENDPOINT_NAME,

STUB_SERVICE, HTTP_BASIC_AUTH_CONNECTOR, HTTP_BASIC_AUTH_REALM,

PROXY_CLASS_NAME, IP, PORT, USERNAME, PASSWORD, CREATED_BY,

LAST_UPDATED_BY, CREATION_DATE, LAST_UPDATED_DATE, OBJECT_STATUS,

OBJECT_VERSION_NUMBER, ANONYMOUS_SECURITY_POLICY,

ANONYMOUS_SECURITY_KEY_NAME)

values ('inquireApplication', 'BaseApplicationServiceSpi',

'http://ofss310406.in.oracle.com:8001/com.ofss.fc.webservice/services/origination/BaseApplicatio

nServiceSpi?wsdl', '',

'http://application.core.service.origination.appx.fc.ofss.com/BaseApplicationServiceSpi', 1200000,

'BaseApplicationServiceSpi', '', '', 'BaseApplicationServiceSpiPort',

'com.ofss.fc.appx.origination.service.core.application.baseapplicationservice

4.3 Class Diagram of Components Involved

Outbound Webservice Extension.

Oracle Banking Digital Experience Extensibility Guide 34

4.4 Client Jar

Generate the corresponding service stubs from the WSDL specifications using The JAX-WS RI
tool. Package the generated code as a jar and include it in the Adapter implementation.

4.5 Custom Adapter

Lastly create a custom adapter to handle the changes made in the host configurations. The custom
adapter will be using the JAXWSFacotry to create instances of the desired service stubs. The rest
of the custom adapter implementation is the same as mentioned in the section 5.3

For example:

Security Customizations

Oracle Banking Digital Experience Extensibility Guide 35

5. Security Customizations

CLIP comprising of several modules has to interface with various systems in an enterprise to
transfer/share data which is generated during business activity that takes place during teller
operations or processing. While managing the transactions that are within CLIP, it is needed to
consider security & identity management and the uniform way in which these services need to be
consumed by all applications in the enterprise.

This is possible if these capabilities can be externalized from the application itself and are
implemented within products that are specialized to handle such services. Examples of these
services include authentication against an enterprise identity-store, creating permissions and role
based authorization model that controls access to not only the components of the application, but
also the data that is visible to the user based on fine-grained entitlements.

5.1 Security Configuration

Method checkAccess() in class AbstractSecureApplication called from ApplicationService
checks flag IS_SECURITY_ENABLED. If this flag has value true then it checks for security.Below
image depicts same.

Following Query is used to configure IS_SECURITY_ENABLED flag in database.

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_FLAG,

OBJECT_VERSION_NUMBER)

values ('IS_SECURITY_ENABLED', 'SecurityConstants', 'true', 'N', '', 'Security Constant',

'ofssuser', '30-JUN-15 04.04.49.000000 PM', 'ofssuser', '30-JUN-15 04.04.49.000000 PM', 'Y', 1);

checkAccess() calls method checkAccessInternal().This method delegates the calls to the
appropriate methods during security access check process. First of all, if the service is blacked out
for the period in which the user is accessing it, then he will not be allowed to perform the
transaction.Access policies are maintained on OID server corresponding to roles. Based on the
policies, the user has access on a particular service or not is validated. If the service under

Security Customizations

Oracle Banking Digital Experience Extensibility Guide 36

execution is eligible for OAAM validations, call is made to OAAM. OAAM validates the policies and
rules set for the service and returns the action to be taken.

Action can be Allow, Block, Challenge1FA, Challenge1FADelay, Challenge2FA,
Challenge2FADelay. Next assertRequiredAuthorizations is used to test for business conditions
that can be either rejected, ignored or overridden. If status is marked as overridden, system
fetches the configured workflow and distributes workitems accordingly.

checkAccessInternal has call to method assertAccessPolicies.

assertAccessPolicies is responsible to check whether user has access to a particular service or
not.

5.2 Security Functions with the Extensibility Features

The following security functions are provided with the extensibility features:

5.2.1 Attributes participating in access policy rules

CLIP uses OES (Oracle Entitlement Server) to assert role-based access policies. Access policies
are rules-based to give more flexibility.

Example of an access policy rule –

Grant

Role=CUSTOMERS_COM_OFSS_DIGX_APP_PARTY_SERVICE_CORE_EMPLOYMENTPROFILE_LI

ST_PERFORM_GRANT_PL

Service(Target)= com.ofss.digx.app.party.service.core.EmploymentProfile.list

Action = perform

Principals=Customer

Following Images shows steps to create new Authoriztion Rule

Step1.

 Click New Under Authorization Policies Tab

Security Customizations

Oracle Banking Digital Experience Extensibility Guide 37

 Add Name and description details, Principles, Targets and Click Save.

Security Customizations

Oracle Banking Digital Experience Extensibility Guide 38

Security Customizations

Oracle Banking Digital Experience Extensibility Guide 39

Following image shows example of access policy rule

The security framework OES(Oracle Entitlement Server) allows for addition to the facts that can be
used in rules. Rule’s Principles and Targets can be added. Following image shows screen to add
Principles.

Security Customizations

Oracle Banking Digital Experience Extensibility Guide 40

Security Customizations

Oracle Banking Digital Experience Extensibility Guide 41

Following image shows screen to add target.

